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Abstract. Using experimental data subject to noise and drift, we find the structure function
can be computed to higher accuracy, yet using less data, than the correlation function.
While this tendency is in line with theoretical reasoning, we seem to be the first to report on
quantitative aspects. Taking wall pressure data from a transsonic wind tunnel, our structure
functions are obtained with one to two orders less of data points than correlation functions
of comparable information content. These advantages apply to auto- and cross-structure
functions alike when compared to auto- and cross-correlation functions, respectively. Some
comments are added on the possibility of designing digital “structurators” similar to
existing digital correlators, either as software products using the FFT and recursive
algorithms, or as hardware products in the form of fast special purpose parallel processors.

PACS: 02.70, 06.50

Structure functions were first considered by
Kolmogorov in 1941 in his work on locally isotropic
and homogeneous turbulence [1-3], where he derived
relations between certain longitudinal and transverse
“moments of second order”, as he called them then.
The term structure function as such seems to have been
coined by Obuchov and Yaglom [4, 5, 3]. Later on, the
definition of structure functions and derivations of the
physical laws formulated with their help, have found
their way into monograph and textbook literature
[6-8].

As pointed out by Tatarski [6], a question of concern
in the analysis of fluctuating experimental data x(r) is
the following: which of the changes of x(t) with time
are those whose statistical properties including va-
riance, correlation time, shape of correlation function,
spectral density etc. are of interest to the investigator,
and which other slower changes are considered as
uninteresting, albeit unavoidable, drift of mean value
or slow fluctuations? In practice, different answers
may be given, depending on experimental aims and
circumstances.
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A useful mathematical idealization is a random func-
tion with stationary first (or linear) increments, x(t).
Then the difference x(f)—x(t+1) is a stationary ran-
dom function and, as such, has finite expectation
values for the mean, the square, and higher powers. To
the extent that experimental data approximate random
functions with stationary increments, if only piecewise
for finite periods of time, forming the difference
x(t)— x(t 4 t) prior to further statistical evaluations is a
reasonable approach. Here the lag time t should be
extended only up to a limit given by those slow
fluctuations which are no longer of interest. A similar
argument applies to the difference x(t)— y(t + 1) where
x and y are like quantities, e.g. pressure, however
measured at two separate locations such that they are
subject to correlated slow, long-range drifts and
fluctuations.

The elimination of data drilts by subtraction indicates
that the structure function tends to converge to its
ultimate shape more rapidly than the correlation
function. As Tatarski [6] suggested, if one begins to
study a random process and is uncertain whether or
not it is a stationary one, the structure function is
preferable. In fact, for a stationary process the struc-
ture and correlation function are fully equivalent, so
that at least no disadvantage can be obtained. Similar

0340-3793/81/0024/0323/$01.40



324

advice was given by Panchev [7]. Nevertheless, little
has been done so far to evaluate experimental data by
means of structure functions [9], to our knowledge
only with respect to meteorological data.

Several likely reasons may be given for this hesitation.
One is the central importance of the Wiener-
Khintchine theorem which relates correlation function
and spectrum. It confers such importance on the
correlation function that indirect ways of obtaining it,
via the structure function, were not considered.
Another reason is the highly developed technology of
computing correlation functions. It includes optimized,
efficient software based on the fast Fourier transform
(FFT) algorithm [10] which runs both on general
purpose computers and on more efficient array pro-
cessors. Alternatively, correlation functions are com-
puted by special purpose parallel processors, ie. by
digital correlators, whose design and applications have
attained a high technological standard [11, 12].
Perhaps the most important reason for hesitation,
however, is the fact that so far there was no quanti-
tative comparison of the number of data points nec-
essary to obtain correlation and structure functions
with similar accuracy. In fact, it is the main purpose of
this paper to give such a comparison, based on typical
experimental data.

The remainder of the paper begins with definitions and
a comparative discussion of correlation and structure
functions. We then present experimental data obtained
-from wall pressure transducers in a transsonic wind
tunnel [13] and relate our experiences in computing
auto- and cross-, -correlation and -structure functions,
respectively.

These functions were obtained by straightforward,
unsophisticated programs on a general purpose com-
puter. We finally offer some view-points on how
structure functions may be obtained more efficiently.
In terms of software for standard computers, this could
be done by adding a further recursive algorithm to the
existing correlation program using FFT. In terms of
hardware, this can be done by a specially designed
parallel processor similar to, although different in
some aspects from, existing digital correlators,

1. Comparison of Correlation and Structure Functions

The autocorrelation function is defined by
> feih
G 0= lim — [ x(O)x(t+7)de, (1)
T—=wo T 0
similarly the crosscorrelation function by

5
G, ()= lim l]’x(r)y{r-{»r}dr. (2)
T—=wm T i
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The autostructure function is delined by
i I
S0)=lim — [[x(t)—x(t+1)]%t, (3)
T—=m 1. 0
and similarly the cross-structure function by
1 T
S(M=lim — [[x(t)— p(t+1)]%dt. (4)
T—=m T ]

In these equations x and y are processes, or functions,
of time, t is running time, 7 is lag or delay, and T is the
integration time. In experimental practice, the pro-
cesses x and y are sampled at equidistant time incre-
ments, so that the integrals are replaced by similar
summations. Also, T is necessarily finite. For economic
reasons one would like to integrate only as long as is
necessary to obtain the limiting functions with pre-
scribed accuracy.

The limes operations in the definitions (1) to (4) deserve
some comment. As is shown in the theory of random
functions [14], the correlation functions (1) and (2)
exist only, il x(t) and y(r) are stationary random
functions. Alternatively, if x(¢) and y(t) show significant
drift in 0<t<T, convergence of the correlation func-
tion is not to be expected. The well-known statements
that the autocorrelation (1) is an even function of T,
G(t)=G(—1), and that it has its maximum at t=0
where therefore dG,/dt=0 and d*G,/dt? <0, are true
only under even more restrictive conditions: x(t) has to
be a stationary continuous random function, and the
statements are true only in a limiting sense for T— oo.
In other words, for finite T one may well find
G(7) % G(— 1) and finite slope dG /dt at t=0.

By comparison, the structure functions (3) and (4) exist
for a more general class of processes x(f) and (1),
namely random functions with stationary first incre-
ments. By definition, the autostructure function (3) is
non-negative everywhere and it vanishes for t=0. If
x(t) is a continuous function, dS./d7._.,=0 and
d*S Jdt?*|,.,>0, and this is true for any finite T, not
just in the limiting case T'— oo.

According to the definitions (1) to (4), there exist
simple relations between correlation and structure
functions. By carrying out the square under the in-
tegral, one has

R R
S(7)= lim — _[ [x()? + x(t +7)* = 2x(6)x(t +1)]dt .
T—=w T o
(5)
For a stationary random function the first two terms

are identical and equal to the correlation function at
zero lag so that then

Sx(r] = 26:(0] =% 2Gx{r] . (6)
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In a similar fashion, for stationary random functions
x(t) and y(t), one has

S (1)=G(0)+G,(0)-2G, (7). 7

Since the zero lag terms are constants, the structure
function offers the same information as the correlation
function, the only differences being those constants, a
negative sign and a factor of 2. The distinction may
become significant, on the other hand, if the random
processes under considerations are not stationary or
contain slow fuctuations.

Such differences may be illustrated by a simple model
function

x(t)=at, (8)

which represents drift. It fits the definition of a random
function with stationary increments. One finds for the
autocorrelation function

G1)=a*(T?/3+1T/2), ©9)

which in the limit T— o0 does not exist. Besides the
constant background increasing with T2 which in most
applications is not harmful, a tilted baseline is in-
dicated by the term linear in 7. Also note that this
result is independent of the sign of a, hence much the
same tilt is to be expected if the drift changes in
magnitude and sign on a slow time scale. For the
structure function one finds

Si(e)=a’1?, (10)

a parabola in 7, independent of T, so that S () exists. It
shows the expected features at =0, namely S (1)=0,
ds /dt=0, d>S_[dt*>0.

Similar conclusions are derived by considering the
model function

x(f)=sinwt. (11)

If the integration time involves an integral number of
half cycles,

wT=nn, (12)
then one obtains the “ideal” autocorrelation

G (1)=jcoswt (13)
and autostructure function

S(1)=1—coswr. (14)

Condition (12) is difficult to realize in practice. A
lengthy but trivial calculation yields additive “error”
terms for T # nm. For mt <1, i.e. near the origin, their
leading term is

AG (1)~ — Z(%sinZwT (15)
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or

) 2.2
45 (1)~ %L’LTsin 20T, (16)
respectively. This shows that for wt <1, the structure
function is less distorted than the correlation function.
Thus the structure function is less suspectible to low
frequency noise.

We note a further distinction between both functions
due to Yaglom [15]. Let f(w) be the spectrum of the
random process x(t). Then, by definition

G (1)= _[m S(w) coswtdw (17)
and
S(1)=2 j:” S(w)(1 —coswr)dw . (18)

Considering these expressions for w—0 and w— o0,
Yaglom has shown, and it is not difficult to see, that
the correlation function exists only if

flw)ocw™ "% for w—o0, (19a)
flw)ecw™ ' for w—0, (19b)
while the structure function exists as long as

Slw)cw™ "% for w—oo, (20a)
Slwycw™ 3" for w—0, (20b)

where ¢ is a small positive number. Proportionality
(20b) shows that the structure function can tolerate
much more low frequency noise. Furthermore he has
shown that for

flw)=Alw|™"
S(t)=Cr""! (22)

with a constant

l+e<p<3—g, 21

C=24n / [sin y r(p)]. (22a)
Our previous example, see (8) and (10), then cor-
responds to a spectrum with p=3. Interestingly the
energy contained in this spectrum diverges, ie. is
infinite.

Panchev [7] quoted another case in which the struc-
ture function proves to be less sensitive against mani-
pulations. He considered a random process x'(f) which
is derived from a drifting random process x(t) by a
continuing adjustment of zero level,

X(0)=x(0) = x>, (23)

where the last term indicates a running average of run
length T. He found the structure functions of x'(t) and
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x(t) to be identical. The correlation function becomes
distorted, however, if one replaces x(1) by x'(t), and he
gave an explicit formula for this distortion.

All of the arguments discussed so far indicate that the
structure function is able to tolerate larger drift and
low [requency noise. It remains to be seen what
reduction in the number of measured data can be
tolerated when doing the structure function. Obviously
this depends on the quality of the experimental data
and the spectral details of interest.

2. Correlation and Structure Functions
of Experimental Data

For a comparative, empirical study of correlation and
structure functions we used wall pressure data from a
transsonic wind tunnel described previously by Meier
[13]. The data shown were taken by flush mounted
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Fig. 1. Sample of experimental data from pressure transducers.
Traces C and D represent 1024 data points each gathered within a
time span of 128 ms from transducers 1 and 2, Traces A and B are
the corresponding amplitude spectra on a frequency seale from 0 to
20kHz
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Fig. 2. Lissajous representation of pressure data from transducer |
versus those of transducer 2 for 200 data points
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piczoelectric transducers, one being located near the
point. of smallest cross section of a halved two-
dimensional Laval nozzle, the other in the plenum
chamber which is joined to the channel of rectangular
cross section in the downstream direction and is in the
shape of a parallel epiped. Typical pressure data are
shown in Fig. 1. Traces C and D show a short sample
of 1024 measured data each, corresponding to a period
of 128 ms, for both transducers. Traces A and B show
the spectra, of the data of traces C and D with
frequencies between 0 and 2kHz.

The curves represent amplitude spectra, i.e. the square
root of the sum of the squares of real and imaginary
part of the Fourier transforms obtained by FFT.
Besides low frequency peaks, both spectra show a
prominent peak at 530 Hz. This peak is consistently
found in the spectra ol consecutive data sets. We
tentatively associate it with the lowest acoustic re-
sonance of the plenum chamber, in which the trans-
verse dimension is hall a wavelength. Two smaller
peaks at 820 and 870 Hz, however, are not a consistent
feature, In other, consecutive data sets they appear at
frequencies varying between 700 and 1000 Hz and with
varying amplitude. Comparison of traces C and D
shows close similarity of virtually all features, from
slow level changes to details in the shape of individual
peaks. This similarity — and the degree to which it is
obscured by noiselike fluctuations — is further illus-
trated by Fig. 2, a Lissajous plot of the data of trace C
versus those of trace D, however only for the first 200
data points. One recognizes a tendency to form an
ellipse accounting for phase shilt and amplitude ratio
of both data sets.

Numerically computed autocorrelation and autostruc-
ture functions of the pressure data from the first
transducer are shown in Figs. 3, 4, and 5. In these
graphs, the sums accumulated in 401 channels - in the
language of correlator technology — are plotted. The
center of the graphs refers to channel number zero,
representing zero lag. Along the abscissa lag increases
from —25 to +25ms, corresponding to channel num-
bers —200 to +200. In Figs. 3, 4, and 5 every value
plotted is the sum of 200, 2000, or 20,000 individual
products (for the correlation functions) or squares (for
the structure lunctions).

Examination of these graphs shows that for the auto-
correlation function one needs around 20,000 data
points, or terms in the sum, to obtain a satisfactory
result. Only then the maximum occurs at zero lag, and
only then the predominant 530 Hz [requency is clearly
discernible. However, even with 20,000 data points, the
autocorrelation is not an even function of lag as
predicted by theory for the limiting case. For 2000 or
200 data points the baseline is severely distorted to the
point that the zero lag maximum is distorted or
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Fig. 3. Computed autocorrelation (dotted curve) and autostructure
(dashed curve) lunction of experimental pressure data. Every value
plotted represents the sum of 200 terms each (products for the
correlation, squares for the structure function). Lag time shown on
the abscissa ranges from —25ms to +25ms which is split up into
401 channels

Fig. 4. As Fig. 3, however with values representing the sum of 2000
terms each

Fig. 5. As Fig. 3, however with values representing the sum of 20,000
terms cach

obscured, and the dominant frequency is difficult to
see.

By comparison, the autostructure function yields the
dominant frequency with good accuracy with as little
as 200 data points. Its minimum is symmetric and at
zero lag, a feature which is inherent in the definition.
With 2000 data points, the autostructure function
assumes a rather regular and symmetric shape whose
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Fig. 6. Similar to Fig. 3, however referring to crosscorrelation
(dotted curve) and cross-structure (dashed curve) function of experi-
mental data from both pressure transducers, Every value plotied
represents the sum of 200 terms each

Fig. 7. As Fig. 6, however with values representing the sum of 2000
terms each

Fig. 8. As Fig. 6, however with values representing the sum of 20,000
terms each

envelope contains information on low-frequency pro-
cesses. Note that such information can be obtained
with better accuracy from the autostructure function
with 2000 data points than from the autocorrelation
function with 20,000 data points.

Cross correlation and cross-structure functions using
data from both transducers are shown, in the same
format, in Figs. 6, 7, and 8. Compared to the auto-
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functions, the cross-functions are somewhat more er-
ratic. This is not surprising since two physically distant
transducers may well experience some unrelated drifts
or fluctuations. Nevertheless, the same comments ap-
ply as before. The functions shown in Fig. 6, 7, and 8
show a displacement of the central peak amounting to
0.5 ms relative to zero lag. However, it is not visible in
the cross correlation of Fig. 6 and the lag appears
larger in that of Fig. 7. These lags are interpreted as
propagation delays of disturbances. They indicate
propagation with the velocity of sound in the upstream
direction, from the plenum chamber back to the Laval
nozzle.
In either case, information may be gathered more
quickly through the structure function. For the data
reported here, the saving is between one and two
orders of magnitude, referring to the number of terms
in the summation. This, of course, depends on the
quality of the input signal. As an examination of Fig. 1
shows, in the present case the amplitudes of high-
frequency and low-frequency details are comparable.
This is apparent in both the frequency spectrum and in
the signal as function of time. It is to be expected,
therefore, that the odds are even more in favor of the
structure function il low-frequency noise amplitudes
exceed a high-frequency random signal.
One may be tempted to argue that similar advantages
may be obtained by highpass filtering the signal prior
to correlating. This is true if one is prepared to accept
“irrevocable loss of signal information. By contrast,
forming the structure function does not imply loss of
information. All spectral details are retained in the
structure function and can be extracted by Fourier
transformation. In particular, low frequency details
can be obtained provided, of course, the structure
function has been determined up to correspondingly
large values of lag.

3. Feasibility of Efficient Structurators

In this section we wish to show that the structure
function of experimental data can be obtained with
comparable demands on computer storage space and
running time (for the software implementation) or by
equipment of comparable complexity and speed (for
the hardware realization) as the correlation function.
Taking this for granted, the faster convergence of the
structure function as demonstrated in the figures of
this paper results in considerable overall advantage.

For computation by the fast Fourier transform (FFT)
algorithm, the (cross) correlation function is defined by

1 T—=t—1

Gnm:T——T 2:0 x(O)y(t+1). (24)
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Here, dropping a multiplying time increment, t, t, and
T are redefined as integers standing, as before, for
running time, lag, and integration time, respectively. T
may be chosen as a power of 2 for efficiency. Note that
the number of terms in the sum decreases with 1 so that
G,,(7) tends to decrease in accuracy for larger t'. The
computation of (24) using FFT is well documented
[10]. Appropriate program products are commercially
available from many computer and software firms.
The correspending (cross-) structure function is

1 T=t—-1
5, ()= o ,-zo [x(0? +y(t +1)*]=2G (1),  (25)

which we rewrite as

1
Sx,-(f] - TS R,“.{T)" 2G,y{f)- (26)
We propose to compute G, (1) by FFT as usually and

to obtain R, recursively. From (25) and (26) one finds
the recursive relation

R ()= R, (t+ 1)=x(T—1—1)*+ y(1)? 27

and the recursion may start either at t=0 where

T-1

R (0)= 3 [x(0*+y(1)?] (28a)
=0

or at t=T-—1 where

Re (T 1)=x(0)>+ y(T—1)%. (28b)

A little reflection shows that the number of additional
computing steps to obtain R, and divide it by T—1, is
directly proportional to T. Thus it increases less steeply
than the FFT where the increase is proportional to
Tlog, T. In this sense, the proposed computation of
the structure function is a fast algorithm. Estimates
show that the total number of computing steps in-
creases by a factor smaller than 2. In addition, some
extra storage is required for x(t), y(t), and R,,. Note
that our arguments apply also to the case treated by
Rader in [10] where the maximum lag of interest is
finite whereas the data sequence is essentially
unterminated.

The point of departure for hardware implementation is
the digital correlator whose technology was pioneered
by Pike and his associates at the Royal Radar and
Signals Establishment, Malvern, UK. Detailed docum-
entation is available in the literature [11, 12] or may
be obtained from manufacturers of correlators®. These

' Note, however, that the FFT procedure due to Rader [10],
involving a fixed upper limit of summation (24), is free of this
disadvantage. It is a simple matter to give a recursive algorithm
similar to (27) and (28) for this case.

? Malvern Instruments, Malvern, UK ; Langley-Ford Instruments,
Amherst, Mass., USA; Spectron Development Laboratories, Costa
Mesa, California, USA.
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instruments compute the function
T
Gyl)= X X(Oy(t—1). 29
=1
I, at the starting moment ¢=0, the shift register
contains previous y(t) data belonging to —t,, St =0,
then the sum has exactly T terms for all values of .
Thus, in contrast to implementation by FFT, all values
of G,, have the same statistical weight and accuracy.
The running time signal, x(t), is handled differently from
the delayed one, y(t — 7). The delayed signal has one-bit
or four-bit format suitable for shift registers. The
running time signal is accepted in the form of a pulse
sequence whose instantaneous rate is a measure ol
x(t).
The digital structurator should compute, in real time,
the function

T
G(1)= Y [x(t)—yt—1)]>. (30)
=]

The form of this expression makes it advisable that
both signals are handled on equal footing. We propose
to have both in the form of 4-bit numbers, for example,
so that shift register operation is possible. Forming the
difference and then the square seem “expensive” oper-
ations, requiring considerable hardware per channel
and being slow in execution time. We therefore pro-
pose to do both subtraction and squaring simul-
taneously by table look-up. To this end, the 4-bit
signals x(t) and y(t — 1) are combined to form an 8-bit
address to a read-only memory (ROM) in which
square numbers are stored. This operation tends to be
fast and the expenditure of one ROM per channel
seems economical. Other parts of the structurator may
essentially be the same as those of the correlator. We
suggest, therefore, that the structurator can be built at
comparable cost and that it will perform at compara-
ble speed.

4. Summary and Conclusion

Using experimental data subject to moderate drilt, we
have found that forming the structure function is a
superior way of getting spectral information. Doing
the correlation and structure functions side by side, the
former required data sets that are one to two orders of
magnitude larger until a similar degree of convergence
and accuracy was obtained. Furthermore, assuming
data sets of equal size, we have shown that both
functions can be obtained at comparable expenditure
of computing time or hardware investment. It seems
probable to us that forming the structure function of
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raw data is a faster converging, more economical
procedure than filtering the data by high-pass filter or
trend-elimination schemes prior to forming the cor-
relation function. However, more empirical work on
this question is desirable. While the structure function
has its place in the theory of turbulence as shown by
Kolmogorov and his school, its potential usefulness
with respect to computer evaluation of experimental
data has yet to be exploited.
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